ich nehm ne milch und geh mir noch schnell die hände waschen
Da solltest hier lieber die Gläser spülen gehen und dann auch besser direkt im stehen trinken.
ich nehm ne milch und geh mir noch schnell die hände waschen
Da solltest hier lieber die Gläser spülen gehen und dann auch besser direkt im stehen trinken.
So`n Schwein (Fussableger) aus Leder ging für knapp 900 Euro beim Lichter überm ZDF-Tisch...
Zu meiner Entschuldigung, ich gucke es nur weil ich ein Defizit bei gelben/grünen Euroscheinen habe : )
Da solltest hier lieber die Gläser spülen gehen und dann auch besser direkt im stehen trinken.
wer bist du denn? willkommen in unserer kneipe
Irgendein investigatives Politmagazin hat mal heimlich aus dem Hand-Spülkästen für Biergläser Proben genommen (das Wasser ist bei einigen 12 Stunden in Betrieb, ohne Wechsel) ... seit dem nur noch was Hochprozentiges nach dem Bier, zum Desinfizieren : )
Matheaufgabe: Wir haben ein Graphen bestehend aus Kanten (blau), die je zwei Knoten (grün) miteinander verbinden:
Ein Hamiltonkreis ist eine Stecke aus Kanten, die jeden Knoten einmal besucht und am Ende wieder am Ausgangsknoten ankommt. Finde diesen Kreis in dem Graphen oder zeig, dass es keinen hier gibt.
Ach komm!
Das ist doch das Haus vom Nikolaus.
Das Pentagramma macht dir Pein?
Ei sage mir, du Sohn der Hölle,
Wenn das dich bannt, wie kamst du denn herein?
Also das Pentagon rund um das Pentagramm, macht mich nervöser.
Also das Pentagon rund um das Pentagramm, macht mich nervöser.
Warum, selbst Ozzy sang einst:
"Generals gathered in their masses
Just like witches at black masses"
Matheaufgabe: Wir haben ein Graphen bestehend aus Kanten (blau), die je zwei Knoten (grün) miteinander verbinden:
Ein Hamiltonkreis ist eine Stecke aus Kanten, die jeden Knoten einmal besucht und am Ende wieder am Ausgangsknoten ankommt. Finde diesen Kreis in dem Graphen oder zeig, dass es keinen hier gibt.
Der Graph ist bipartit. Die Anzahl der Elemente der zwei Mengen, in die man die Knoten des Graphs teilen kann, ist jeweils gerade, daher existiert ein Hamiltonkreis Aber frag mich nicht, wie der aussieht. Gibt bestimmt noch Theoreme der Homologie, mit denen man das schneller hinbekommt, aber da bin ich überfragt
Fehlen da nicht Kanten? Weil jeder Knoten hat den Grad 3.
Na super, du solltest doch zeigen, dass es keinen gibt und wenn doch, dann solltest du zeigen, wie er aussieht Dennoch ist deine Aussage nicht korrekt, es existiert kein Hamiltonkreis. Das kriegt man allein durch ein paar mal rumprobieren raus (Haus vom Nikolaus halt). Man sieht auch sehr schnell, dass die zwei disjunkten Knotenmengen einmal das Pentagon, und einmal das Pentagram ist - und die sind nun mal ungerade, was also deiner Aussage widerspricht. Dann wiederum....
...bitteschön! https://en.wikipedia.org/wiki/Petersen_graph
Und jetzt lasst uns mal bitte aufhören so zu tun, als hätten wir von Graphentheorie Ahnung, ich nämlich absolut nicht
Klingt so weit einleuchtend : )
Video-Game from Russia:
The game promises to be so immersive and atmospheric that you might be tempted to adorn your walls with an Oriental carpet, put on a Russian hat and stroll down memory lane to the not so distant Soviet past.
The marketing blurb for the game proclaims: "Online Boozing Simulator" is your ideal solution for drinking alcohol in the company of true gentlemen. Look for these equally sophisticated gentlemen to discuss geopolitics over a bottle of vodka."
Finally, if players start to get bored they can always invite a bear to join them – a sure way to liven up any party.
https://www.rbth.com/lifestyle…ew-video-game-from-russia
Russische Firmen produzieren HBO/Netflix/Amazon-like Eigenproduktionen, laut Trailer ganz gutes Zeug.
Matheaufgabe: Wir haben ein Graphen bestehend aus Kanten (blau), die je zwei Knoten (grün) miteinander verbinden:
Ein Hamiltonkreis ist eine Stecke aus Kanten, die jeden Knoten einmal besucht und am Ende wieder am Ausgangsknoten ankommt. Finde diesen Kreis in dem Graphen oder zeig, dass es keinen hier gibt.
First I thought "How hard can it be",
after some reading turns out NP.
Na super, du solltest doch zeigen, dass es keinen gibt und wenn doch, dann solltest du zeigen, wie er aussieht Dennoch ist deine Aussage nicht korrekt, es existiert kein Hamiltonkreis. Das kriegt man allein durch ein paar mal rumprobieren raus (Haus vom Nikolaus halt). Man sieht auch sehr schnell, dass die zwei disjunkten Knotenmengen einmal das Pentagon, und einmal das Pentagram ist - und die sind nun mal ungerade, was also deiner Aussage widerspricht. Dann wiederum....
...bitteschön! https://en.wikipedia.org/wiki/Petersen_graph
Und jetzt lasst uns mal bitte aufhören so zu tun, als hätten wir von Graphentheorie Ahnung, ich nämlich absolut nicht
Dann zeig es halt konkret 😅 Bzw. den Beweis, und wiederlege, was ich geschrieben habe, ich will doch was lernen🥴
Dann zeig es halt konkret 😅 Bzw. den Beweis, und wiederlege, was ich geschrieben habe.
Siehe Verlinkung von mir:
ZitatTo see that the Petersen graph has no Hamiltonian cycle C, consider the edges in the cut disconnecting the inner 5-cycle from the outer one. If there is a Hamiltonian cycle, an even number of these edges must be chosen. If only two of them are chosen, their end-vertices must be adjacent in the two 5-cycles, which is not possible. Hence 4 of them are chosen. Assume that the top edge of the cut is not chosen (all the other cases are the same by symmetry). Of the 5 edges in the outer cycle, the two top edges must be chosen, the two side edges must not be chosen, and hence the bottom edge must be chosen. The top two edges in the inner cycle must be chosen, but this completes a non-spanning cycle, which cannot be part of a Hamiltonian cycle. Alternatively, we can also describe the ten-vertex 3-regular graphs that do have a Hamiltonian cycle and show that none of them is the Petersen graph, by finding a cycle in each of them that is shorter than any cycle in the Petersen graph. Any ten-vertex Hamiltonian 3-regular graph consists of a ten-vertex cycle C plus five chords. If any chord connects two vertices at distance two or three along C from each other, the graph has a 3-cycle or 4-cycle, and therefore cannot be the Petersen graph. If two chords connect opposite vertices of C to vertices at distance four along C, there is again a 4-cycle. The only remaining case is a Möbius ladder formed by connecting each pair of opposite vertices by a chord, which again has a 4-cycle. Since the Petersen graph has girth five, it cannot be formed in this way and has no Hamiltonian cycle.
Ich maße mir nicht an die reichhaltigen und in sich komplexen Definitionen in der Graphentheorie zu kennen. Die Erklärung ist aber dennoch durchaus nachvollziehbar, wenn man einen bisschen Erfahrung mit dem ein oder anderen mathematischen Bereich hat (Gruppentheorie und Symmetrieoperationen aus der Kristallographie haben mir hier geholfen).
Alles nicht so leicht, aber durchaus interessant wenn es darum geht einen effizienten Hamiltonian Cycle zu programmieren, wenn man DHL liefrant ist und jede Kante auch noch eine andere Gewichtung hat. Da heißt es dann nicht finde “einen“ sonder n “den Weg mit der geringsten Gewichtung“. Bei über 500 Knoten schon gar nicht so easy, das mit der Hand nachzuzeichnen
Haus vom Nikolaus halt
Hab mich nur kurz eingelesen, wäre das Haus nicht ein Eulerkreis, mit der Vorgabe jede Kante genau einmal zu durchlaufen, während beim Hamiltonkreis nicht jede Kante aber jeder Knoten einmal (Anfangsknoten am ende wieder) angelaufen wird?
Siehe Verlinkung von mir:
Ich maße mir nicht an die reichhaltigen und in sich komplexen Definitionen in der Graphentheorie zu kennen. Die Erklärung ist aber dennoch durchaus nachvollziehbar, wenn man einen bisschen Erfahrung mit dem ein oder anderen mathematischen Bereich hat (Gruppentheorie und Symmetrieoperationen aus der Kristallographie haben mir hier geholfen).
Alles nicht so leicht, aber durchaus interessant wenn es darum geht einen effizienten Hamiltonian Cycle zu programmieren, wenn man DHL liefrant ist und jede Kante auch noch eine andere Gewichtung hat. Da heißt es dann nicht finde “einen“ sonder n “den Weg mit der geringsten Gewichtung“. Bei über 500 Knoten schon gar nicht so easy, das mit der Hand nachzuzeichnen
Ja ok. Bipartit aber die disjunken Mengen sind ungerade (die Anzahl). Ok, das reicht auch schon als Beweis, das es keinen gibt. Thx 👍 Aber wenigstens hab ich nicht abgeschaut nä nä nä Wär cooler, wenn du es mir mit deinen eigenen Ideen erklärt hättest. Wir sind ja alle schon so gewöhnt, alles im Internet zu finden. Aber egal.
Hab mich nur kurz eingelesen, wäre das Haus nicht ein Eulerkreis, mit der Vorgabe jede Kante genau einmal zu durchlaufen, während beim Hamiltonkreis nicht jede Kante aber jeder Knoten einmal (Anfangsknoten am ende wieder) angelaufen wird?
Das ist schon richtig, allerdings ging's mir in dem Punkt nur darum, wie ich das Problem zunächst lösen wollte - und das ist bei mir zuerst halt immerzu wild drauflosprobieren.
Du hast noch kein Benutzerkonto auf unserer Seite? Registriere dich kostenlos und nimm an unserer Community teil!